
We ca nno t us e a s olve  block, but mu st  so lve eq uatio n (2) for  ν, then  substitu te for  ν (nu ) 
in e quation  (3).  
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Dividing equation (1) by r, it the n equ ates f orce s and  we add a te rm  f or the  Bev f o r  c e  ,  we  
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Solu tion of orbits with out m agnetic fiel d

(Math cad pref ers the  use of q fo r th e ch arge on th e ele ct ro n)

Th is  is th e m athe mat ical a nal ysis of c oupling  between  a  hyd rogen  like atom and a 
magn etic field  as demonstrat ed by th e Ster n-Ge rlach experiment.

This is an html  file generated from Mathcad.

Stern-Gerlach experiment

Effect of magnetic field
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We now change the variable from r to c
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and solve for c (we could divide by c and solve the quadratic, but Mathcad can solve cubics)
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We take the first solution as the only one which will reduce to c
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Taking out a factor of m π⋅  the solution is written 
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Expanding the square root as a Binomial distribution and neglecting higher terms
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Which we can check by putting B = 0
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The energy of the orbiting electron is most easily calculated using Virial Theorem form the 
potential  energy PE = -2 * KE
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Which may be written
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We identify the second term as the coupling energy which is equal to the product of the 
magnetic moment and the flux density.

The magnetic moment is
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which for n = 1 is the Bohr magneton.


