M assive neutron stars
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The metrics of GR coincide with the much earlier predictioR@f. Michellthat light cannot escape frol

within a radiusr = 28M. GR then predicts and defines an event horizon at this radius. However, the

behind this degends on the use of weak field approximations and the order in which they are applie

either (1 — )* or (1 - 2I%). We assert that the expressi¢h — 25)) derived through weak fielc
D

approximations coincides with the first two terms of the exponential fungtianThis is consistent with ou

previous proof that the effects of gravitational potential are to multiply by powe%s of

c2

While Einstein would seem to have worked backwards fRew. Michell'sprediction in formulating his

D
theory, our correction to the metric replaci(rig— 2';%') with € leaves no room for the prediction of ¢
event horizon.

From the above discussion in previous sections, it would seem that there are two factors mitigating

[0))
the collapse of a neutron star to a singularity. The first is the nature of the fugictiand the second is th
reduction in gravitational mass. The question is whether or not these are enough to prevent the coll
sufficiently massive neutron star. This is further complicated by the fact that as the star collapses, |
energy is converted into kinetic energy. The gravitational mass cannot reduce without a dissipatio
kinetic energy. The collapsing star must therefore radiate energy. It is also reasonable to assume ths
the kinetic energy will be stored in the rotation of the star.

A star does not suddenly become a neutron star, but evolves into one as temperatures and presst
electron capture and iron nuclei embark on a decay cycle which turns them into a neutron fluid. If th
massive enough, a point is reached when the gravitational potential at its centre due to its own mass
sufficient to significantly increase the density of physical mass per unit Euclidean volume. Howev
effect of gravitational potential in reducing gravitational mass prevents this from turning into a ru
process which might results in a black hole.

As we have seen, gravitational potential is additive and its effects multiplicative. This gives us a me
modelling the process of constructing a neutron star. This is obviously not the way nature constructs
stars, but it is a well proven mathematical technique used in the classical calculation of gravitational |
and force. We start with a small core and then build it up by bringing in shells of material from afai
new shell of massn = om will have a constant potential inside it equal—t@r?—m, so its effect on the

assembly of shells within will be to reduce the dimensions of each of the shells which have alrea
Gom

added by a factoe “7. But the new shell is influenced by the gravitational potential of the existing
which has so far been built up. This means that Bathandr; are affected and we must calculate i
gravitational potential with care. We have shown that gravitational potential can be calculated in two \
GM,  GM,
re r

b =

either using physical masé, and the radius. calculated from the circumference as measured with a rul
gravitational massVly and Euclidean radius.

The first principle of the classical derivation is that the gravitation potential due to a thin spherical :
constant within that shell givin®; jx = Gr—”‘ If we now surround that shell with another shell of nmgssnd

radiusr;, we increase the magnitude of the gravitational potential withi Ry = — Gr—J”‘ with the result that
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every Euclidean length withim is reduced by the facte?l. But the gravitational mass of everywithin m
is also reduced by the same factor, so evigryvithin m remains constant. That is to say that with -
addition of thej, shell, the potential due to the existinghells, as measured at points within the mas:
unaffected.

Because the locally measured value of the radiusf each existing shell remains constant, as additic
shells are added we may use the locally measured madassthe independent variable. This allows us
work in terms of the physical mass of the shells. If each new shell has a surfacedareaanfd a thickness
ore, its volume will bedr r2dr. in local units of volume. Measuring volume in local units gives a cons
numerical result because the unit of length is affected in the same way as is length, and likewise for
The physical mass of the shell is therefore:

om, = 4z prior,

As successive shells are added, a particular ghsllreduced in Euclidean size, however, its numer
thickness, radius, surface area and volume expressed in local units remain constant. The gra
potential within it, due to its mass also remains constant.

If we were able to wonder around within the star making local measurements with a ruler in o
calculate its volume, we would find everything consistent with the local parameted would be quite
unaware of the distortions of the star's interior relative to Euclidean space. Thus we would find 1
volume of the star as the sum of locally measured divisions was eqéalRfowhereR is the locally
measured radius of the star. Our parametés thus good for calculating the physical mass of the star 1
its locally measured density (physical mass per local unit volume) and outer radius. This allows |
determineR from its physical mass and the density of neutron fluid.

R = .
7T
In the classical derivation, the gravitational potentials at the centre and at the surface of a spherica
uniform density are:
3GM GM 3
_ I 9

c 2T ST Pe = 5P

and the mathematical derivation of them using the Euclidean measurements and the independent
have a one to one correspondence with our calculations in terms of our pargnsgere may conclude
that:

36M, GM,
_ -

¢ 21 B e

And we can take the classical result for the gravitational potential at some diaténooe the centre of
sphere and within its mass and perform the same mapping to give:

3r2 — a2 3r2 — a2

@y = ~GMy=— o~ = @2 = ~GM,——
c

Thus we can determine the effects of gravitational potential within the star in terms of these pat
values.

3 3Mp
4z p

SubstitutingR =
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4 p 4 M3 p
b, = -GM,J—— -G
S "\3M, 3
The Euclidean radius of the star is thus:
. 47Z|\/I%p
B 3
R = e c2 3 %
4 p

This is a well behaved function, however the nature of the exponential function means that as a net
increases in mass, a point is reached when its Euclidean radius starts to decrease. Because of the p
exponential function, very massive stars will collapse towards a very small, but finite size. The me
Euclidean diameter of a neutron star is just under 19 km fopgc26nit equal to mass of sun is read "so
masses") and one of 883vould have the Euclidean size of a golf ball. The following graph was copied
one generated by Mathcad.
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Recent observations of the motion of stars close to the centre of the galaxy indicate the existence
massive black hole estimated by UCLA Galactic Centre Group as 3,76000AGubstitution of such a larg
number into the above formula, even Mathcad simply returns 0. To get a value for the Euclidean ra
need to employ a little pre-calculator knowledge and "take logs".

A7 M%p

3

logR = Iog( e ©

3M
+ |0g( m)

_g e
o 3M
= ——— + log| Y —
In10 4r p
= -171Q3712
= 17116288

R = 4.245x 101!
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At this point, only those of us old enough to have been taught to use logs to multiply decime
understand what is going on. A log consists of a characteristic and a mantissa to the left and rigl
decimal point. Antilog tables require a positive mantissa-43103712 becomes-1711 + 0.6288and is
written as17116288and read "bar 1711 point 6288". We would then look up 0.6288 in the antilog tab
get 4.254 giving the final answer 4845 x 101711

Thisisrather small

So we find that the concepts of black holes and singularities become somewhat blurred. What we h
object which from the point of view of observation is a point sized object, but it is still vastly bigger
singularity with zero size. The important thing to understand is that even with an obje4®k 10171
metres radius, the laws of physics still apply. They do not break down and if scientific rulers anc
balances could be constructed of neutron fluid is would still be possible to measure the density of the
fluid and the circumference of the star in local units and calculate its mass. The mathematical funci
well behaved. It may only have a Euclidean radius the size of nothing, but in local units, it has a r:
over a thousand km. If the figure for the density of neutron fluid can be relied upon, then its locally mq
circumference would be about 8,700 km.

The most important factor is the effect on time dependent processes. In particular, the effect on the p
forming a massive neutron star. The mathematics is too complicated to produce a meaningful mode
can make some rough estimates. If we consider the supermassive object as a sphere of uniform den
Is increasing in density as it looses energy. At a stage where it is still 1,000,000 times less dense tha
fluid, the effect of gravitational potential will be to slow time dependant processes by a factor of
7 x 10718 Now the universe is only abobitx 10' seconds old, so since the formation of the earth, less
a tenth of a second of local time has passed. That is only long enough for light to travel half the radit
object. So there is going to be a limiting factor imposed by the age of the universe. When on ave
object was 10,000,000 times less dense, time was only slowed by a fabfot afid a second of local tim
lasted about 4 months, so we can assume that the limiting process cuts in somewhere between th
say at 2,000,000 times less dense which gives a locally measured radius of about 175,000 ki
Euclidean radius of aboGt004 mm.

Not so small after all!

Paged of 4
© Copyright Bruce Harvey 1997/2008



	Massive neutron stars

