
Force on a Charge in a Magnetic Field

HOME: The Physics of Bruce Harvey

In our unified theory, the primary function of magnetic fields is to provide elementary charged particles with
the property of inertial mass. We assert that the electric fields of elementary charged particles coexist in
space forming a background against which the motion of an individual charged particle generates a magnetic
field  and that the energy stored in its magnetic field is its kinetic energy. The inertial force is
generated by the need to do work, (or have work done to) to change the energy content of the magnetic field.
While the inertial forces associated with linear acceleration arise simply from energy considerations, the
explanation of centrifugal force resisting centripetal acceleration requires us to postulate that energy moves
parallel to the electric field. Thus an element of area of the surface sits at the base of a conic element and a
force acts on (or by) the surface element as a result of the changes in magnetic energy density within the
conic element.

Bå = µ0 uå ∧ Då

We wish to use the same methods to prove that the force acting on a charge moving with velocity  through
a magnetic field which in the absence of the charge has a flux density  is:

q vå
Bå

F =  B e v  Få = q vå ∧ Båor

We assert that the fundamental equation of the electromagnetic interactions is:

Qm =
1
2

 µ0 (∑
i

  uå i ∧ Då i)2

where  is the energy density of the universal magnetic field which results from the motions of the
electric fields  of all elementary charged particles.All magnetic forces are due to changes in requiring
work to be done to moving charges, or allowing them to do work.

Qm uå i

Då i Qm

We can partition this equation: that is to say that we separate the summation into summations over various
sets of charges. We choose to separate the moving charge from all the other charges whose motions sum to
give the magnetic intensity  of the magnetic field in the absense of . 

qj

Hå 0 = ∑i ≠ j  uå i ∧ Då i qj

Qm =
1
2

 µ0 (Hå 0 + uå j ∧ Då j)
2

(1)

The velocity  of the charge is measured relative to the background because it is this which generates the
magnetic field containing its kinetic energy and it is against this that any force on the charge acts doing work
or adsorbing energy.

uå j

We can also substitute . It is now clear that the only charge in question is, so we can drop the
subscripts giving: 

Då j = q rˆ
4 π r2 qj

Qm = 1
2 µ0 (Hå 0 + uå  ∧

q rˆ
4 π r2)2

= 1
2 µ0 ( Hå 2

0 + 2 Hå 0 ⋅ uå  ∧
e rˆ

4 π r2
+ (uå  ∧

q rˆ
4 π r2)2

  )
Further substitution gives:
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Qm = 1
2 Bå 0 ⋅ Hå 0 + Bå 0 ⋅ uå  ∧

q rˆ
4 π r2

+ 1
2 Bå q ⋅ Hå q

Where  and  describe the magnetic field through which the charge is travelling with velocity  while
and  describe the magnetic field which would surround the moving charge in the absence of. Thus the
first term gives the energy density of the background field in the absence of the moving charge and the third
term gives the kinetic energy of the moving charge. The middle term is therefore responsible for any change
in the energy density. Differentiating with respect to time:

Bå 0 Hå 0 q vå Bå q

Hå q Bå 0

d

dt
 Qm =

d

dt
 (Bå 0 ⋅ uå  ∧

q rˆ
4 π r2)

We consider the energy content of a conic element described by spherical polar co-ordinateswith
origin at the charge's instantaneous position. We orientate the co-ordisnate system such that lies in the

 plane and  lies in the  axis. The conic element has a solid angle  and a
volume element . If the energy content of the conic element which is due to the second term is

, then The rate of change of energy within the conic element due to the second term is: 

(r, θ, ϕ)
Bå

ϕ = 0 vå θ = 0 δω = sin θ δϕ δθ
δτ = r2 δω δr

δEm

d

dt
δEm = ∫

 ∞

r0

d

dt
 Qm r2 δω dr

d

dt
δEm = ∫

 ∞

r0

d

dt
 (Bå 0 ⋅ uå  ∧

q rˆ
4 π r2)  r2 δω dr

d

dt
δEm =

q 
4 π

 δω ∫
 ∞

r0

d

dt
 (Bå 0 ⋅ uå  ∧ rˆ )   dr

Consider the term . It is a vector triple scalar product which gives a scalar field in space.
This scalar field has the same locus as the magnetic field. The volume elements are moving through that
scalar field at a velocity, the velocity of the charge relative to the magnetic field. The rate of change of the
scalar field within the volume elements is given by . The symbols  are called the gradient and are
usually read as "Grad phi". The gradient of a scalar field is a vector field and the rate of change depends on
the speed and direction, so we take the scalar product . Then:

Bå 0 ⋅ (γu uå ∧ rˆ ) φ
Bå 0

vå
vå ⋅ ∇φ ∇φ

vå ⋅ ∇φ

vå ⋅ ∇φ = vå ⋅ ∇ (Bå 0 ⋅ uå  ∧ rˆ )
It follows that:

d

dt
δEm =

q

4 π
 δω ∫

∞

r0

vå ⋅ ∇ (Bå 0 ⋅ uå  ∧ rˆ )   dr

We now have two distinct velocities for our charge, its velocity relative to the magnetic field through which
it is moving and  its velocity through the the background against which motion generates magnetic intensity.
For Maxwell, this would have been the aether, but in our unified theory, the electric fields of all elementary
charged particles coexisting in space form that background. Although is unknowable, it appears later in our
calculations as the velocity involved in the generation and adsorption of energy by the surface of the charge.
It then becomes a simple matter to eliminate it leaving only the relative velocity .

vå
uå

uå

vå

We still have a problem to resolve with our use of co-ordinates. It is necessary to express in spherical
polar co-ordinates. 

vå ⋅ ∇φ

vå ⋅ ∇ = vx 
d

dx
+ vy 

d

dy
+ vz 

d

dz
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= vx 
d

dr
 
∂ r

∂ x
+ vy 

d

dr
 
∂ r

∂ y
+ vz 

d

dr
 
∂ r

∂ z

= vx 
d

dr
 

1
+ vy 

d

dr
 

1
+ vz 

d

dr
 

1

cos θ sin θ cos ϕ sin θ sin ϕ

=
d

dr ( vx  +
vy +  

vz )cos θ sin θ cos ϕ sin θ sin ϕ

On substitution:

d

dt
δEm =

q

4 π
 δω ∫

∞

r0

d

dr ( vx  +
vy +  

vz ) (Bå 0 ⋅ uå  ∧ rˆ )   dr
cos θ sin θ cos ϕ sin θ sin ϕ

The integrations are now trivial since in general⌠⌡
d
dx (F ()) dx = F ()

d

dt
δEm =

q

4 π
 δω 


( vx  +

vy +  
vz ) (Bå 0 ⋅ uå  ∧ rˆ )  



 ∞

 r0
cos θ sin θ cos ϕ sin θ sin ϕ

The magnetic flux density  of the magnetic field in the absence of the moving charge is a function of to
be evaluated at the limits in the usual manor. At infinity, , therefore:  

Bå 0 r
Bå 0 = 0

d

dt
δEm = − 

q

4 π
 δω ( vx  +

vy +  
vz ) (Bå 0 ⋅ uå  ∧ rˆ )

cos θ sin θ cos ϕ sin θ sin ϕ

 has ceased to be a general descriptor of the magnetic field and now gives the magnetic flux density which
would exist at the location of the charge if the charge were not there. 
Bå 0

It is now desirable to subject the scalar triple product to a cyclic rotation giving:

d

dt
δEm = − 

q

4 π
 δω ( vx  +

vy +  
vz ) (uå ⋅ rˆ ∧ Bå 0 )

cos θ sin θ cos ϕ sin θ sin ϕ

= − uå ⋅ 



q

4 π
 ( vx  +

vy +  
vz ) (rˆ ∧ Bå 0 )


  δω

cos θ sin θ cos ϕ sin θ sin ϕ

d

dt
δEm = − 

q

4 π
 δω ( vx  +

vy +  
vz ) (uå ⋅ rˆ ∧ Bå 0 )

cos θ sin θ cos ϕ sin θ sin ϕ

= − uå ⋅ 



q

4 π
 ( vx  +

vy +  
vz ) (rˆ ∧ Bå 0 )


  δω

cos θ sin θ cos ϕ sin θ sin ϕ

We can equate this result with the action of a force  moving with velocity . Note that both this
action and the generation of the magnetic field possessing the kinetic energy of the charge take place against
the background formed by the presence of the electric fields of all elementary charged particles. The force on
the element of the surface of the charge is:

uå ⋅ δFå δFå uå
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δFå = − 
q

4 π
 ( vx  +

vy +  
vz ) (Bå 0 ∧ rˆ  ) δω

cos θ sin θ cos ϕ sin θ sin ϕ

We have in effect cancelled a dot product . While this is not allowed directly, it
is correct that  . This is the case for .

Aå ⋅ Bå = Aå ⋅ Cå ⇒ Bå = Cå
IF Aå ⋅ Bå = Aå ⋅ Cå   f or any Aå   THEN  Bå = Cå uå

To find the total force, we must integrate over the surface of the charge.

Få = − 
q

4 π ∫
π

0
 ∫

2π

0
 ( vx  +

vy +  
vz ) (Bå 0 ∧ rˆ  )  dϕ  sin θ dθ

cos θ sin θ cos ϕ sin θ sin ϕ

Få = − 
q

4 π ∫
π

0
 ∫

2π

0









    
vx  +   

vy  +   
vz  









 ( ) dϕ  sin θ dθ
cos θ sin θ cos ϕ sin θ sin ϕ

By sin θ sin ϕ − Bz sin θ cos ϕ
Bz cos θ − Bx sin θ sin ϕ
Bx sin θ cos ϕ − By cos θ

= − 
q

4 π ∫
π

0
 ∫

2π

0
vx ( ) + vy ( ) + vz ( ) dϕ  sin θ dθ

By tan θ sin ϕ − Bz tan θ cos ϕ
Bz − Bx tan θ sin ϕ
Bx tan θ cos ϕ − By 

By  tan ϕ − Bz  
Bz cot θ sec ϕ − Bx  cot ϕ

Bx  − By cot θ sec ϕ

By  − Bz  cot ϕ
Bz cot θ − Bx 

Bx  cot ϕ − By cot θ cosec ϕ

Removing terms which integrate over  or θ to give zero:ϕ

Få = − 
q

4 π ∫
π

0
 ∫

2π

0
vx ( ) + vy ( ) + vz ( ) dϕ sin θ  dθ

0
Bz 

−By 

−Bz  
0

Bx  

By  
−Bx 

0

= − q ( )vz By − vy Bz

vx Bz − vz Bx

vy Bx −  vxBy 

= q ( )vy Bz − vz By

vz Bx − vx Bz

vxBy − vy Bx  

= q vå ∧ Bå

We have derived from our fundamental assertions the force  upon a moving chargeFå = q vå ∧ Bå

We do however make the proviso that the charge is surrounded by its own magnetic field and does not sit
in the background magnetic field. The flux density is that in the absence of the charge. An alternative form
of the equation is:

q
Bå

Få = q vå ∧ µ0 Hå 0

It should also be emphasised that the force does not result from a direct action of ether or
 upon the charge. These terms arise from the integration of over the whole field.

Bå
Hå 0 = ∑i ≠ j  uå i ∧ Då i
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